Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization
نویسندگان
چکیده
منابع مشابه
Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization.
Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin...
متن کاملRedox Catalysis Facilitates Lignin Depolymerization
Lignin is a recalcitrant and underexploited natural feedstock for aromatic commodity chemicals, and its degradation generally requires the use of high temperatures and harsh reaction conditions. Herein we present an ambient temperature one-pot process for the controlled oxidation and depolymerization of this potent resource. Harnessing the potential of electrocatalytic oxidation in conjugation ...
متن کاملLignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization
Lignocellulosic biomass is available in large quantities and constitutes an attractive feedstock for the sustainable production of bulk and fine chemicals. Although methods have been established for the conversion of its cellulosic fractions, valorization of lignin has proven to be challenging. The difficulty in disassembling lignin originates from its heterogeneous structure and its propensity...
متن کاملCatalytic Depolymerization of Lignin and Woody Biomass in Supercritical Ethanol: Influence of Reaction Temperature and Feedstock
The one-step ethanolysis approach to upgrade lignin to monomeric aromatics using a CuMgAl mixed oxide catalyst is studied in detail. The influence of reaction temperature (200-420 °C) on the product distribution is investigated. At low temperature (200-250 °C), recondensation is dominant, while char-forming reactions become significant at high reaction temperature (>380 °C). At preferred interm...
متن کاملLignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification
BACKGROUND Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2016
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.aaf7810